求知 文章 文库 Lib 视频 iPerson 课程 认证 咨询 工具 讲座 Model Center   Code  
会员   
 
 
 
开班计划 | 技术学院 | 管理学院 | 嵌入式学院 | 机械 | 军工学院 | 定向培养 | 专家指导  
 电话 English
成功案例   品质保证
成功案例
中航信 数据湖架构原理与应
某医疗磁 数据采集与处理
某科技公 大数据(Hadoo
诺基亚 Python基础
天津电子 Elasticse
中国电信 数据仓库与数据挖掘
某航天科 MySQL性能优化

相关课程  
并发、大容量、高性能数据库
高级数据库架构设计师
Hadoop原理与实践
HBase原理与高级应用
Oracle 数据仓库
数据仓库和数据挖掘
Oracle数据库开发与管理
 
全部课程 >人工智能  
人工智能与机器学习应用实战
2626 次浏览  52 次
Hinter
中国科学院某研究所工作,高级工程师,项目组长。
 
时间地点:线上、北京、深圳 根据报名开班
课程费用:5500元/人
报公开课  
企业内训:可以根据企业需求,定制内训,详见 内训学习手册


认证方式:
培训前了解能力模型。
培训后进行能力评测:
  • 在线考试
  • 能力分析,给出学习建议
  • 合格者颁发证书,作为职业技能资格证明


    近年来,随着"人工智能"深入应用到社会各个行业,通过将对应的人工智能技术比如人脸识别,车牌识别等应用到具体的行业信息化领域,包括新兴互联网企业(如电商企业、搜索引擎、社交网站、互联网广告服务提供商等)、金融企业(银行、保险、证券公司、互联网金融借贷公司等)、通信运营商(电信、移动、联通)等行业的企业。在国内外形成了独具特色的智能产业和智能经济。

    本课程对业界主流最新的人工智能及其应用实战技术分成基础级、进阶级、高级实战三个层次进行系统化地培训,让学员分成三个阶段深入系统地掌握人工智能技术的应用:

      1) 第一阶段:人工智能基础级培训内容,让学员掌握人工智能的基础知识,人工智能的问题解决思路,人工智能的应用案例,人工智能产业和人工智能产品的应用解决方案。
      2) 第二阶段:人工智能进阶级培训内容,让学员掌握人工智能中用到的机器学习方法和深度学习方法,包括有监督学习,无监督学习和半监督学习,以及决策树机器学习、朴素贝叶斯机器学习、神经网络机器学习、深度学习、卷积神经网络和LSTM神经网络机器学习的算法模型的原理和应用实践操作,每类算法模型在具体场景中的应用实践。
      3) 第三阶段:人工智能高级项目应用培训内容,让学员掌握人工智能的系统平台工具的应用实战,包括人工智能的代表性系统工具平台:TesorFlow深度学习平台,Keras深度学习库和Python AI系统的应用实践,在讲解的同时,由讲师带着学员对人工智能工具安排实践操作,让学员更突出掌握实战技能。
    课程收益:

    1、 通过本课程的学习,学员可以用较短的时间掌握人工智能领域的基础和精华内容
    2、 让学员掌握人工智能的基础知识,人工智能的问题解决思路,人工智能的应用案例,人工智能产业和人工智能产品的应用解决方案。
    3、 让学员掌握人工智能的技术平台应用,重点包括Python Keras,TensorFlow,PyTorch, Theano,CNTK,Caffe等应用实战,并且通过两三个具体的企业应用实验操作,巩固掌握的AI技术和平台。
    培训对象:
      1、 IT工程师
      2、 人工智能架构师
      3、 其它对人工智能和机器学习感兴趣的人员
    学员基础:最好了解Python编程,并对机器学习算法有基础概念了解
    授课方式: 定制课程 + 案例讲解 + 小组讨论,60%案例讲解,40%实践演练

    培训内容:2天

    人工智能基础、技术及其体系 1. 人工智能(Artificial Intelligence,AI)的定义、起源、用途
    2. 人工智能的发展历程与脉络
    3. 人工智能的国家政策解读
    4. 人工智能的技术体系
    5. 人工智能的技术框架
    6. 中国和美国的人工智能产业和主流人工智能产品
    人工智能的问题求解及技术实现 7. 人工智能领域的经典问题和求解方式
    8. 机器学习模型和推理符号模型
    9. 业界主流的机器学习方法解决人工智能领域的思路
    10. 人工智能和大数据
    11. 人工智能和机器学习
    12. 人工智能和深度学习
    人工智能的学习方式 13. 有监督学习训练
    14. 无监督学习训练
    15. 半监督学习训练
    人工智能的行业应用与发展 16. 人工智能的行业图谱和行业发展剖析
    17. 人工智能结合大数据的行业应用案例
    18. 人工智能在“互联网+”领域的应用
    19. 人工智能在制造业领域的应用
    20. 人工智能在金融、消费领域的应用
    21. 人工智能在出行、旅游领域的应用
    部署人工智能实验平台 22. 部署人工智能实验操作软件和环境
    23. 运行讲师提供的人工智能简单示例验证环境的准确性
    24. 熟悉实验资料和实验环境
    人工智能机器学习的算法模型的应用实践(1) 25. 人工智能领域的四大类经典算法模型
    26. 神经网络机器学习算法模型及其应用
    27. 决策树算法模型及其应用
    28. 关联分析算法模型及其应用
    29. 聚类分析算法模型及其应用
    30. 深度学习算法模型及应用
    人工智能机器学习的算法模型的应用实践(2) 31. 朴素贝叶斯算法模型及其应用
    32. 逻辑回归算法模型及其预测应用
    33. Python机器学习库的应用
    34. Python Scikit-learn算法库的使用讲解
    人工智能和机器学习的实验操作 35. Python Scikit-learn算法库的实战操作
    36. 利用Python语言编程,实现分类预测项目
    37. 实验要求准确率、召回率、误差等指标
    深度学习技术及其应用 38. 浅层学习技术及应用
    39. 深度学习算法、技模型及应用
    40. CNN卷积神经网络算法模型及应用
    41. RNN循环神经网络算法模型及应用
    42. LSTM神经网络算法模型及应用
    43. 深度学习在人脸识别、语音识别领域的解决方案
    TensorFlow AI深度学习平台及其应用实践(1) 44. TensorFlow:一个AI深度学习框架的概述
    45. TensorFlow架构
    46. TensorFlow的安装、部署、配置
    47. TensorFlow的应用场景和应用案例
    48. TensorFlow搭建GPU和CPU人工智能集群
    49. 基于Tensorflow实现CNN模型应用,以及算法部署,算法调优,处理效率提升之道
    50. 基于Tensorflow实现RNN(LSTM)模型应用,以及算法部署,算法调优,处理效率提升之道
    TensorFlow AI深度学习平台及其应用实践(2) 51. TensorFlow CNN应用操作
    52. TensorFlow RNN应用操作
    53. TensorFlow LSTM应用操作
    54. TensorFlow在自然语言生成建模案例
    55. TensorFlow在图像识别的实验操作
    Tensorboard AI 深度学习可视化建模工具与模型优化 56. Tensorboard简介
    57. Tensorboard可视化和命名空间
    58. TensorFlow人工智能建模模型状态评估与优化
    59. Tensorboard的部署、配置和应用编程
    60. 利用Tensorboard实现图像识别操作
    61. 利用TensorFlow实现文本挖掘操作
    Keras 人工智能平台应用实践 62. Keras人工智能平台架构
    63. Keras AI平台的部署与配置
    64. Keras技术实现与工作机制
    65. Keras序列模式
    66. Keras图像与自然语言应用案例
    67. Keras实验操作:Kaggle图像比赛与优化案例(选做)
    人工智能的产品解决方案 68. 图像处理解决方案
    69. 人脸识别解决方案
    70. 语音识别解决方案
    71. 文本分类解决方案
    72. 视频理解解决方案
    项目实践 73. 人脸识别项目
    74. 新闻内容文本分类预测项目
    75. 讲师提供项目指导手册,带着学员完成,学员独立完成后,讲师答疑
    人工智能项目工程师的技能素养 (选讲) 76. 人工智能工程师的必备技术能力
    77. 人工智能工程师的必备业务理解能力
    78. 人工智能工程师的必备数据洞察能力
    79. 人工智能工程师的进阶路线和职业素养
    培训内容综合、应用完整实践与咨询讨论 80. 根据讲师布置的实际应用案例,开展人工智能和大数据完整项目部署设计和应用开发实践、应用实施以及解决方案分享咨询与交流讨论
       
    2626 次浏览  52 次
    其他人还看了课程
    大模型与Sora技术应用  688 次浏览
    金融行业人工智能与数据挖掘实战  2028 次浏览
    使用GPU和CUDA 提升 Python程序的性能   1338 次浏览
    大模型微调原理与实操  1320 次浏览
    使用ROS2开发机器人应用  1887 次浏览
    强化学习及案例实践  2801 次浏览
    定制内训


    最新活动计划
    软件测试架构师 9-19[线上]
    QT应用开发 9-24[北京]
    Python、数据分析与机器学习 9-20[线上]
    鸿蒙和欧拉操作系统的项目应用 9-19线上]
    UAF架构体系与实践 9-26[北京]
    MBSE(基于模型的系统工程)9-27[上海]