专题 |
授课内容
|
简述 |
第一天上午:
数据挖掘基础知识
|
内容一:数据挖掘基本概念 |
1、 数据挖掘的来源
2、 数据挖掘的定义
3、 数据挖掘的应用领域
4、 数据挖掘的 |
内容二:BI的架构 |
1、BI体系介绍
2、数据仓库介绍
3、ETL介绍
4、多维数据库介绍
5、前端展现介绍
6、数据挖掘模型介绍 |
内容三:数据挖掘工具介绍 |
1、ETL工具和数据预处理工具介绍
2、SPSS工具介绍
3、SAS工具介绍
4、SSAS工具介绍 |
内容四、数据挖掘在行业中的应用
|
1、现代企业数据挖掘需求概述
2、电信行业案例分析
3、金融行业案例研究
4、销售行业案例分析
5、BI系统数据更新与维护 |
|
介绍数据挖掘基本概念,BI体系架构, 数据挖掘工具介绍及其应用,针对行业提供行业解决方案和案例分析。
|
第一天下午:
数据挖掘架构设计与完整流程详解
|
内容一:九种数据挖掘算法 |
1、 九种挖掘算法应用的背景
2、 决策树算法与模型设计
3、 聚类算法与模型设计
4、 关联规则算法与模型设计
5、 贝叶斯算法与模型设计
6、 时间序列算法与模型设计
7、 其他挖掘算法与模型设计 |
内容二:常用挖掘模型详解 |
1、决策树算法详解及工具实现
2、聚类算法详解及工具实现
3、关联规则算法详解及工具实现
4、贝叶斯算法详解及工具实现
5、时间序列算法详解及工具实现
6、数据挖掘模型评估 |
内容三:数据挖掘的流程 |
1、数据清洗准备
2、数据预处理
3、选择数据挖掘模型
4、数据挖掘模型训练
5、更新算法模型
6、模型评估
7、部署与应用 |
内容四:DMX语言 |
1、DMX语法结构
2、使用DMX创建挖掘模型
3、使用DMX将挖掘结果导出
4、使用DMX进行挖掘模型参数设置 |
|
九种数据挖掘算法与模型详解,数据挖掘的设计与实施流程,数据挖掘查询语言的使用等,重点对决策树算法、关联规则算法、聚类算法等给出详细设计和处理流程。 |
第二天上午:
数据挖掘项目案例分析
|
内容一:中国电信数据挖掘项目 |
1、项目介绍
2、复杂多系统多数据源的特点
3、ODS的使用
4、整体项目架构设计
5、数据挖掘算法选取
6、数据挖掘模型设计
7、数据挖掘处理流程
8、数据抽取策略的制定
8、挖掘模型的更新技巧 |
内容二:MSN数据挖掘项目 |
1、项目介绍
2、项目中的海量数据
3、数据挖掘算法
4、数据挖掘模型构建
5、数据的预处理技术
6、对挖掘模型进行训练
7、展示数据挖掘模型结果
8、数据挖掘模型评估 |
内容三:AdventureWorks整体项目案例 |
1、案例介绍
2、ETL流程详解
3、OLAP流程详解
4、前端报表流程详解
5、数据挖掘流程详解 |
|
大型数据仓库与数据挖掘项目设计和实施,重点对项目架构设计和数据完整处理流程做重点分析和详细介绍,针对大型数据挖掘项目,提供了完备的解决方案,给出完整设计思路和数据处理技术应用。 |
第二天下午:
数据挖掘工具操作与使用
|
内容一:SPSS工具操作与使用 |
1、SPSS工具基本介绍
2、数据清洗与整合功能
3、建立挖掘模型流程
4、训练和处理挖掘模型
5、使用相关控件
6、使用SPSS解决业务问题 |
内容二:SAS工具操作与使用 |
1、SAS基本介绍
2、SAS中的控件
3、SAS中训练和处理挖掘模型
4、SAS使用中需要注意的问题
5、SAS操作技巧与实践经验 |
内容三:SSAS中的挖掘模型
|
1、SSAS中的数据挖掘模型介绍
2、使用SSAS建立挖掘模型
3、使用SSAS训练挖掘模型
4、使用SSAS展现挖掘结果
5、使用SSAS与SSIS将挖掘结果导出 |
|
详细讲解主流数据挖掘工具操作与使用,结合实际项目案例给出工具使用方法和演示,并给出使用中的常用方法和处理技巧。 |