第一部分:数据仓库的概念深入 |
1.在大数据环境下数据仓库的困境和挑战
2.数据仓库的体系结构多样性解读
3.数据仓库与数据挖掘的关系 |
第二部分
基于SQL Server环境下的数据仓库开发应用过程 |
1.SQL
Server下的数据仓库开发应用的特点
2.数据仓库的规划过程
3.数据仓库的概念模型设计
4.数据仓库的逻辑模型
5. 物理模型的设计
6.基于Sql Server环境下的数据仓库的实施过程及特点 |
第三部分
数据仓库的应用与管理 |
1.数据仓库应用案例
电信、移动、联通、银行、销售等行业的应用举例
2.数据仓库的运行技术管理
3.SQL SERVER下的数据仓库的元数据管理
4. 数据仓库工程中注意事项 |
第四部分
SQL SERVER下的ETL应用技术进阶 |
1、
ETL发展背景与大数据下的SQL SERVER 的ETL技术变迁
2、 ETL过程阶段重点及注意事项和经验总结
3、 ETL特性及案例分析,如何高效实现稳定性、安全性、可扩展性、健壮性、可维护性、高可用性?
4、 大数据环境下的数据仓库ETL体系结构如何应对变化的需求
5、 如何更好选择ETL工具,它的评价准则怎样?
6、 SQL SERVER 环境下的ETL的管理
1)ETL的数据质量管理
2)ETL的数据集成
3)ETL的元数据
7、 ETL展望 |
第五部分:数据挖掘及数据分析技术
|
1.数据挖掘主要分析方法:
1.聚类分析(Clustering)
2.分类分析(Classification)
3.关联分析(Association)
4.预测分析(Prediction)
5.回归分析
6.相关分析
7.数据比较分析
8.数据挖掘的可视化
2.数据挖掘的实施
3.分析图形: 正态性检验 描述性统计 箱型图、区间图、时序图 介绍
4.数据挖掘的关键技术:数据预处理
5.数据挖掘效果的评估
实践:SPSS结合相应的分析算法及展示图形 |
第六部分:构建**数据挖掘分析体系
|
1、分析团队建设
2、分析工作管理
3、数据分析核心能力建设
4、分析工作与业务协同 |
第七部分.数据挖掘应用 |
1.数据挖掘及管理经验
2.数据挖掘在金融、电商、运营商行业领域的应用举例
2.1 客户行为与潜在客户分析
2.2 用户信用度分析
2.3 趋势预测
2.4新产品交叉营销分析 等
3. 结合业务场景需求,进行数据挖掘实践:
1.客户细分聚类分析实践
2.金融贷款防欺诈挖掘分析
3.金融/电商客户流失预测挖掘分析
(以上涉及当下主流的聚类、相关、决策树、神经网络及回归分析等数据挖掘算法) |